Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice.
نویسندگان
چکیده
Ca(2+)-binding proteins of the EF-hand family are widely expressed in the CNS, and contribute to intracellular Ca(2+) buffering in neurons. In nerve terminals, Ca(2+)-binding proteins are likely to regulate transmitter release probability and synaptic short-term-plasticity. Here, we investigated the developmental expression pattern of calretinin and parvalbumin at a large excitatory synapse, the calyx of Held in the medial nucleus of the trapezoid body (MNTB) of rats and mice. We used two-colour immunofluorescence imaging with primary antibodies detecting one of the Ca(2+)-binding proteins, and a presynaptic marker protein, Rab-3A. Calretinin was found in nerve terminals of the calyx of Held, but not in postsynaptic principal cells. The presynaptic density of Calretinin staining, and the degree of colocalization with Rab-3A increased during postnatal development (P6-P31). Surprisingly, not all calyces of Held expressed calretinin. In rats, calretinin-containing calyces were irregularly interspersed with calretinin-negative calyces, whereas in mice, calretinin-positive calyces were preferentially located in the lateral portion of the MNTB. The percentage of calretinin-positive calyces increased during development, to about 75% and 20% at P30 in rats and in mice, respectively. Parvalbumin was present in the presynaptic calyces of Held and in the nerve fibres entering the MNTB, as well as in the somata of the MNTB principal neurons. An up-regulation of calretinin and parvalbumin in calyces of Held probably increases the presynaptic Ca(2+) buffering strength during postnatal development, but the unexpected heterogeneity of calretinin expression might cause differences in Ca(2+) signalling and transmitter release probability between calyces of Held.
منابع مشابه
Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation.
Presynaptic Ca2+ signaling plays a crucial role in short-term plasticity of synaptic transmission. Here, we studied the role of mobile endogenous presynaptic Ca2+ buffer(s) in modulating paired-pulse facilitation at a large excitatory nerve terminal in the auditory brainstem, the calyx of Held. To do so, we assessed the effect of presynaptic whole-cell recording, which should lead to the diffus...
متن کاملEditorial: Determinants of Synaptic Information Transfer: From Ca2+ Binding Proteins to Ca2+ Signaling Domains
Ca 2+ ions are key regulators of fundamental synaptic processes including transmitter release and the induction of plasticity. They act within complex topographical relationships between the sites of Ca 2+ influx and those sites where the Ca 2+ controlled effector proteins are located. These topographies are dynamically shaped by protein-complexes and the spatio-temporal extent of Ca 2+ elevati...
متن کاملImmunohistochemical study on the expression of calcium binding proteins (calbindin-D28k, calretinin, and parvalbumin) in the cerebellum of the nNOS knock-out(-/-) mice
Nitric Oxide (NO) actively participates in the regulation of neuronal intracellular Ca(2+) levels by modulating the activity of various channels and receptors. To test the possibility that modulation of Ca(2+) buffer protein expression level by NO participates in this regulatory effect, we examined expression of calbindin-D28k, calretinin, and parvalbumin in the cerebellum of neuronal NO syntha...
متن کاملInvestigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats
Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...
متن کاملExposure to Sevoflurane Affects the Development of Parvalbumin Interneurons in the Main Olfactory Bulb in Mice
Sevoflurane is widely used in adult and pediatric patients during clinical surgeries. Although studies have shown that exposure to sevoflurane impairs solfactory memory after an operation, the neuropathological changes underlying this effect are not clear. This study detected the effect of sevoflurane exposure on the development of calcium-binding proteins-expressing interneurons in the main ol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2004